Triterpenoid Constituents of Huperzia miyoshiana

TONG, Xiao-Tian(童孝田) TAN, Chang-Heng(谭昌恒) ZHOU, Hui(周慧)
JIANG, Shan-Hao(蒋山好) MA, Xiao-Qiang(马晓强) ZHU, Da-Yuan*(朱大元)

State Key Laboratory of Drug Research , Institute of Materia Medica , Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 201203 , China

Thirteen triterpenoids , including three new ones , miyoshianols A (1) , B (2) and C (3) , were isolated from *Huperzia miyoshiana* . The structures of these new compounds were established as 3-O-dihydroferuloyltohogenol (1) , 16-oxo-3 β 21 β -dihydroxy-serrat-14-en-24-ferulate (2) and 16-oxo-3 α , 21 β -dihydroxy-serrat-14-en-24-ferulate (3) , respectively , on the basis of their spectroscopic analysis .

Keywords $Huperzia\ miyoshiana$, triterpenoids , miyoshianols A , B and C

Introduction

Serratenediol (5), a representative serratene-type triterpenoid with 7-membered ring-C and 7 tertiary methyls, was firstly isolated from the Japanese club moss Lycopodium serratum (= Huperzia serrata) in 1964. 12 Subsequently intense activities in this field have led to the discovery of a series of this type triterpenoids from diverse plants, such as conifers (especially Pinus and Picea species), 34 club moss (Lycopodium and Huperzia species), 34 ferns 5 and the liverwort (Nardia scalaris). 6 Recently, we reported three new triterpenoids with ser-

ratane-type from Huperzia serrata. As a continuous interest in this species, we investigated the non-alkaloid constituents of Huperzia miyoshiana (Makino) Ching (Huperziaceae), a club moss grows merely in the middle part of Asia, obtaining three new triterpenoids, miyoshianols A (1), B(2) and C(3), together with 10 known compounds, 3-O-acetyltohogenol (4), β 3β-hydroxy-serrat-14en-21 α -ol (5), serrat-14-en-3 β , 21 α -diyl-acetate (6), α 21α -hydroxy-serrat-14-en- 3β -yl-acetate (7), 21 β -hydroxy-serrat-14-en-3 β -yl-acetate (8), 3 β -hydroxy-serrat-14-en-21β-ol (9), 16-oxo-3α-hydroxy -serrat-14-en-21βol (10), 11 3 β , $^{21}\beta$ -dihydroxy-serrat-14-en-29-ol (11), 12 3α , 21 β -dihydroxy-serrat-14-en-24-ol (12) and 3β , 21 α dihydroxy-serrat-14-en-24-ol (13). 13 The chemical components of this plant was reported for the first time. In this paper, we describe the isolation and structure elucidation of above-mentioned new compounds.

Results and discussion

The planar structure of compound 4 was deduced to

$$R^{1} \qquad R^{2}$$

$$R^{2} \qquad R^{1} \qquad R^{2}$$

$$R^{1} \qquad R^{2}$$

$$R^{2} \qquad R^{1} \qquad R^{2}$$

$$R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{1} \qquad R^{2} \qquad R^{2}$$

$$R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{1} \qquad R^{2} \qquad R^{2}$$

$$R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{3} \qquad R^{2} \qquad R^{2}$$

$$R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{3} \qquad R^{3} \qquad R^{3} \qquad R^{3}$$

$$R^{4} \qquad R^{2} \qquad R^{2}$$

$$R^{4} \qquad R^{2} \qquad R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{4} \qquad R^{2} \qquad R^{2} \qquad R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{4} \qquad R^{2} \qquad R^{2} \qquad R^{2} \qquad R^{2} \qquad R^{2}$$

$$R^{4} \qquad R^{2} \qquad R^{2$$

^{*} E-mail:dyzhu@mail.shcnc.ac.cn; Tel.:86-21-50806728; Fax:86-21-50807088 Received March 14, 2003; revised May 13, 2003; accepted June 26, 2003. Project supported by the National Natural Science Foundation of China (No. 39900013).

be the same with 3-O-acetyltohogenol⁸ by means of IR , EIMS and NMR ($^1\mathrm{H}$, $^{13}\mathrm{C}$ NMR , HMQC and HMBC) analyses. The configuration of **4** was elucidated through chemical conversions. Acetylation of **4** with Ac₂O afforded **14** , dehydration of **14** with SOCl₂-pyridine gave the sole product **6**. These results confirmed compound **4** to be 3-O-acetyltohogenol with 14 β -OH . 14 The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR signals (Tables 1 and 2) were assigned completely for the first time .

The molecular formula $C_{40}H_{62}O_6$ of miyoshianol A(1)

is deduced from the HREIMS. The IR spectrum of 1 resembles that of 4 with the exception of the extra signals for an aromatic ring (1518 , 1463 and $1369~{\rm cm}^{-1}$). The $^1{\rm H}$ and $^{13}{\rm C}$ NMR (Tables 1 and 2) spectra show signals for seven tertiary methyl groups , a methine ($\delta_{\rm H}$ 4.65 , dd , J=11.4 , 4.7 Hz ; $\delta_{\rm C}$ 80.8) geminal to an ester group with equatorial orientation , a methine ($\delta_{\rm H}$ 3.55 , dd , J=11.3 , 4.3 Hz ; $\delta_{\rm C}$ 78.4) connected with an equatorial hydroxyl , and an oxygenated quaternary carbon ($\delta_{\rm C}$ 74.9) . Comparison of the 1 H and 13 C NMR spectra of 1

Table 1 $\,^{1}\text{H}$ NMR spectral data of compounds 1—4 in $C_5D_5N^{\it a}$

Site	1	2	3	4
H-1	1.70^{b} , 1.00^{b}	1.80^b , 1.03^b	1.80^b , 1.56^b	1.68^b , 0.99^b
H-2	1.70^b , 1.70^b	1.95^b , 1.95^b	2.17^b , 1.95^b	1.64^b , 1.71^b
H-3	4.65 (dd , <i>J</i> = 11.4 ,4.7 Hz)	3.62 (dd , J = 11.4, 4.6 Hz)	4.19 (br.s)	4.58 (dd , $J = 11.1$, 4.7 Hz)
H-5	0.92^b	1.00^b	1.90^b	0.90^b
H-6	1.41^b , 1.36^b	1.84^{b} , 1.84^{b}	1.41^{b} , 1.26^{b}	1.42^{b} , 1.42^{b}
H-7	1.73^b , 1.42^b	1.40^{b} , 1.20^{b}	1.38^{b} , 1.21^{b}	1.73^{b} , 1.41^{b}
H-9	1.65^{b}	$0.85^{\it b}$	1.00^b	1.65^{b}
H-11	2.05^{b} , 1.60^{b}	1.90^{b} , 1.21^{b}	1.84^{b} , 1.15^{b}	2.01^{b} , 1.60^{b}
H-12	1.88^{b} , 1.67^{b}	1.97^b , 1.15^b	1.90^b , 1.12^b	1.85^{b} , 1.65^{b}
H-13	1.09^b	2.50 (d , $J = 8.6 \; \mathrm{Hz}$)	2.48 (br.d , $J = 8.6 \text{ Hz}$)	1.10^b
H-15	1.93^b , 1.65^b	5.95(s)	5.94(s)	1.92^{b} , 1.62^{b}
H-16	1.72^{b} , 1.20^{b}	_	_	1.74^{b} , 1.17^{b}
H-17	0.98^b	3.03(s)	3.04(s)	0.98^b
H-19	1.90^b , 1.12^b	2.29 (br.t, J = 11.3 Hz) 1.59 (dd, J = 11.4, 4.8 Hz)	2.26 (td , J = 13.1 , 3.0 Hz) 1.55 (m)	1.88^{b} , 1.12^{b}
H-20	1.93^b , 2.02^b	2.03^{b} , 1.88^{b}	2.03^b , 1.82^b	1.95^b , 1.95^b
H-21	3.55 (dd , <i>J</i> = 11.3 ,4.3 Hz)	3.60 (br.s)	3.59 (br.s)	3.54 (dd , <i>J</i> = 11.1 , 4.8 Hz)
H-23	0.83(s,3H)	1.51(s,3H)	1.48(s,3H)	0.81(s,3H)
H-24	0.91(s,3H)	5.02 (d , <i>J</i> = 11.7 Hz) 4.78 (d , <i>J</i> = 11.7 Hz)	4.69 (d , <i>J</i> = 11.2 Hz) 4.40 (d , <i>J</i> = 11.2 Hz)	0.88(s,3H)
H-25	0.84(s,3H)	0.96(s,3H)	0.89(s,3H)	0.82(s,3H)
H-26	1.02(s,3H)	0.77(s,3H)	0.73(s,3H)	1.00(s,3H)
H-27	1.74 (d , $J = 14.8 \text{ Hz}$) 1.58 (d , $J = 14.8 \text{ Hz}$)	2.40 (d , <i>J</i> = 14.7 Hz) 1.95 (d , <i>J</i> = 14.7 Hz)	2.34 (d , <i>J</i> = 14.7 Hz) 1.87 (d , <i>J</i> = 14.7 Hz)	1.72 (d , $J = 14.9 \text{ Hz}$) 1.55 (d , $J = 14.9 \text{ Hz}$)
H-28	1.35(s,3H)	0.91(s,3H)	0.89(s,3H)	1.34(s,3H)
H-29	1.14(s,3H)	1.38(s,3H)	1.38(s,3H)	1.13(s,3H)
H-30	1.30(s,3H)	1.85(s,3H)	1.71(s,3H)	1.28(s,3H)
H-2'	7.00 (br.s)	7.33 (br.s)	7.38 (d, $J = 1.7 \text{ Hz}$)	2.04(s,3H,OAc)
H-5′	7.21 (d, $J = 7.6 \text{ Hz}$)	7.19 (d, $J = 8.7 \text{ Hz}$)	7.23 (d, $J = 8.2 \text{ Hz}$)	_
H-6′	6.92 (br.d , $J = 7.6 \text{ Hz}$)	7.23 (d, $J = 8.7 \text{ Hz}$)	7.27 (dd , $J = 8.2$, 1.7 Hz)	_
H-7′	3.07 (br.t, $J = 7.6 \text{ Hz}$)	8.06 (d, $J = 15.8$ Hz)	8.05 (d , $J = 15.8$ Hz)	_
H-8′	2.80(t, J = 7.6 Hz)	6.82 (d, $J = 15.8$ Hz)	6.78 (d, $J = 15.8 \text{ Hz}$)	_
OCH_3	3.80(s,3H)	3.72(s,3H)	3.78(s,3H)	_

 $[\]overline{}^a$ Values were recorded at 400 MHz , J in Hz. b The signals were either multiplets or overlapping with other peaks , and assignments were performed by measuring the center of cross peaks in the 2D NMR spectra.

with those of **4** indicates that both have the same serratane-type triterpenoid moiety. The remained signals in the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **1** disclose a dihydroferulic acid ester group 12 by exhibiting signals for three ABX pattern aromatic protons (δ_{H} 7.00 , br.s ; 7.21 , d , J=7.6 Hz ; 6.92 , br. d , J=7.6 Hz) , two methylene groups with A_2B_2 system (each 2H , t , J=7.6 Hz , δ_{H} 3.07 and

2.80) and a phenolic methoxy group ($\delta_{\rm H}~3.80$, s , 3H ; $\delta_{\rm C}~56.0$). Therefore , miyoshianol A is the dihydroferulate of tohogenol. The HMBC spectrum displays the correlations of C-27/H₃-26 , C-9/H₃-25 , H₃-26 , C-5/H₃-23 , H₃-24 , H₃-25 , C-3/H₃-23 , H₃-24 and C-9'/H-3 , affirming 1 to be 3-O-dihydroferuloyltohogenol .

Table 2 ¹³C NMR spectral data of compounds 1—4 in C₅D₅N^a

	$\delta_{ m C}$			HMBC (C to H)		
Site	1	2	3	4	1	2
C-1	38.2 t	39.2 t	33.8 t	38.0 t	Me-25, H-2	Me-25, H-2
C-2	24.3 t	28.4 t	26.7 t	24.1 t	_	_
C-3	80.8 d	78.1 d	69.9 d	80.7 d	Me-23,24	Me-23, H-2, 24
C-4	38.1 s	43.1 s	$42.7 \mathrm{s}$	38.0 s	Me-23,24,H-3,6	Me-23, H-5, 24
C-5	55.6 d	56.4 d	$50.0~\mathrm{d}$	55.4 d	Me-23,24,25,H-6	Me-23,25,H-24
C-6	19.3 t	20.8 t	19.4 t	19.2 t	H-7	Me-25
C-7	44.6 t	45.9 t	45.6 t	44.5 t	Me-26, H-6, 27	Me-26, H-6
C-8	38.3 s	38.1 s	$38.3 \mathrm{\ s}$	38.1 s	Me-28, H-9, 27	Me-26, H-6, 27
C-9	59.5 d	62.9 d	62.6 d	59.3 d	Me-25,26,H-27	Me-25,26,H-27
C-10	38.5 s	$38.5 \mathrm{\ s}$	$38.5 \mathrm{s}$	$38.4 \mathrm{s}$	Me-25, H-1	Me-25, H-1, 5, 9
C-11	19.4 t	25.3 t	25.3 t	19.3 t	H-9,12	_
C-12	26.3 t	26.9 t	27.0 t	26.2 t	_	_
C-13	60.5 d	59.0 d	59.1 d	60.4 d	Me-28, H-27	Me-28, H-27, 28
C-14	74.9 s	$163.5~\mathrm{s}$	$163.6~\mathrm{s}$	74.8 s	H-15,27	H-27
C-15	46.0 t	129.1 d	129.1 d	45.9 t	H-27	H-27
C-16	25.7 t	$201.4~\mathrm{s}$	$201.4~\mathrm{s}$	25.6 t	_	H-17
C-17	56.1 d	59.6 d	59.6 d	56.0 d	Me-28,29,30	Me-28,29,30
C-18	39.0 s	44.8 s	44.8 s	38.8 s	Me-28, H-17, 19	Me-28, H-17
C-19	39.0 t	32.1 t	32.0 t	39.0 t	Me-28, H-20	Me-28, H-21
C-20	28.5 t	26.0 t	26.0 t	28.4 t	_	H-21
C-21	78.4 d	$76.0~\mathrm{d}$	$76.0~\mathrm{d}$	78.3 d	Me-29,30	Me-29,30
C-22	39.8 s	$37.7 \mathrm{\ s}$	$37.7 \mathrm{s}$	39.7 s	Me-29,30	Me-29,30,H-17
C-23	28.1 q	23.4 q	23.6 q	28.0 q	Me-24, H-3	H-24
C-24	16.7 q	66.5 t	68.1 t	16.6 q	Me-23, H-3	Me-23,25
C-25	16.7 q	16.0 q	16.4 q	16.6 q	H-9	_
C-26	23.4 q	19.9 q	20.0 q	23.3 q	H-9,27	H-27
C-27	62.2 t	55.9 t	56.0 t	62.0 t	Me-26	Me-26, H-15
C-28	16.5 q	15.3 q	15.3 q	16.4 q	_	H-17,19
C-29	16.8 q	22.3 q	22.2 q	16.7 q	Me-30, H-21	Me-30, H-17
C-30	29.2 q	29.1 q	29.1 q	29.1 q	Me-29, H-21	Me-29, H-17
C-1'	132.3 s	$126.7~\mathrm{s}$	$126.7~\mathrm{s}$	170.6 s (C = O)	$\text{H}2^\prime$, 6^\prime , 7^\prime , 8^\prime	H-6', 7', 8'
C-2'	113.1 d	111.6 d	111.7 d	21.2 q (OAc)	H-6',7'	H-6',7'
C-3'	148.8 s	$149.0\;\mathrm{s}$	$149.6\;\mathrm{s}$	_	$H-2'$, $5'$, OCH_3	$H-2'$, $5'$, OCH_3
C-4'	146.8 s	$151.2\;\mathrm{s}$	$151.2~\mathrm{s}$	_	H-2',5',6'	H-2',5',6'
C-5'	116.7 d	117.0 d	117.0 d	_	H-6'	H-6′
C-6′	121.6 d	123.0 d	123.1 d	_	H-2',7'	H-2',5',7'
C-7'	31.3 t	145.6 d	145.7 d	_	H-2',6',8'	H-2',6'
C-8'	37.1 t	116.0 d	115.6 d	_	H-7′	H-7′
C-9'	172.8 s	168.1 s	$168.0~\mathrm{s}$	_	H-7',8',3	H-7', 8', 24
OCH ₃	56.0 q	56.0 q	56.0 q		_	_

 $^{^{\}it a}$ Values were recorded at 100 MHz , and assignments were from DEPT and 2D NMR spectra .

The molecular ion at m/z 648.4009 in the HREIMS discloses the molecular formula C₄₀H₅₆O₇ for miyoshianol B (2)($C_{40}H_{56}O_7$ requires 648.4026). The IR spectrum of 2 suggests the presence of hydroxyl group (3417 cm⁻¹) and α , β -unsaturated carbonyl group (1702 and 1666 cm⁻¹). The ¹H NMR spectrum (Table 1) of 2 reveals signals for six tertiary methyl groups , a proton ($\delta_{\rm H}$ 3.03 , s , H-17) of a methine neighbored to a ketone , a vinylic proton ($\delta_{\rm H}$ 5.95, s, H-15), an axial proton (δ_H 3.62, dd, J = 11.4,4.6 Hz, H-3) geminal to a hydroxyl group, an equatorial proton ($\delta_{\rm H}$ 3.60, br.s, H-21) geminal to a hydroxyl group , and a pair of AB model protons ($\delta_{\rm H}$ 4.78 and 5.02, each 1H, d, J = 11.7 Hz, H_2-24), indicating a 16-oxoserratriol-type triterpenoid. 11 Furthermore, the 1H NMR spectrum exhibits signals due to a 1 3 A-trisubstituted benzene ring (δ_H 7.33, br.s; 7.23, d, J = 8.7 Hz; and 7.19, d, J = 8.7 Hz), two trans-conjugated olefinic protons at $\delta_{\rm H}$ 8.06 and 6.82 (each 1H , d , J = 15.8 Hz) and a phenolic methoxyl group at $\delta_{\rm H}$ 3.72(s, 3H), indicating the existence of a ferulic acid ester group. 12 The 40 carbons signals observed in the ¹³C NMR spectrum (Table 2) are characterized by the DEPT experiment, suggesting that 2 has an ester carbonyl, a ketone, four sp² quaternary carbons, six sp² methines, two oxymethines, an oxymethylene, five sp³ quaternary carbons, four sp³ methines, nine methylenes, six tertiary methyls and a phenolic methoxy

The above evidences demonstrate **2** to be a 16-oxoser-ratene triol ferulate. Further structural information is discovered from extensive 2D NMR (HMQC , HMBC and NOESY) analyses . The HMBC (Table 2) spectrum shows the correlations from the methylene protons ($\delta_{\rm H}$ 5.02 and 4.78) to the carbonyl carbon of ferulic acid ($\delta_{\rm C}$ 168.1) , from H-17 ($\delta_{\rm H}$ 3.03) to C-16 ($\delta_{\rm C}$ 201.4) , C-28 ($\delta_{\rm C}$ 15.3) , C-29 ($\delta_{\rm C}$ 22.3) and C-30 ($\delta_{\rm C}$ 29.1) , from H₃-26 ($\delta_{\rm H}$ 0.77) to C-27 ($\delta_{\rm C}$ 55.9) , and from H₃-25 , H₃-26 ($\delta_{\rm H}$ 0.96 , 0.77) to C-9 ($\delta_{\rm C}$ 62.9) , suggesting that the ferulic acid ester group is located at C-23 or C-24. The feruloxyl group attached to C-24 is constructed on the basis of NOE (Fig. 1) correlations between H_a-24 ($\delta_{\rm H}$ 4.78) and H₃-25 , and between H_b-24 ($\delta_{\rm H}$ 5.02) and H-6. Therefore , **2** is formulated as 16-oxo-3 β 21 β -dihydroxy-

RO
$$H_a$$
 CH_3 CH_3

Fig. 1 Key NOE correlations of 2.

serrat-14-en-24-ferulate.

Miyoshianol C (3) is assigned the molecular formula $C_{40}H_{56}\,O_7$ by the HREIMS (calcd for 648.4026 , found 648.4044). Its IR spectrum is similar to that of 2. The 1H NMR (Table 1) spectrum is nearly superposed with that of 2 , excluding a proton signal at δ_H 4.19 (br.s) instead of the H-3 signal (δ_H 3.62 , dd , J=11.4 ,4.6 Hz) of 2 , indicating the proton attached to C-3 to be equatorial (β -configuration) rather than axial . Moreover , in contrast with the ^{13}C NMR data of 2 , those differences ($\Delta\delta_{2\text{-}3}$: C-1 , -5.4 and C-5 , -6.4) are attributed to the γ -gauche effect from the axial-hydroxyl attached to C-3 of 3 , validating 3 to be 16-oxo-3 α ,21 β -dihydroxy-serrat-14-en-24-ferulate .

Experimental

General

All melting points were determined on a Fisher-Johns melting point apparatus and were uncorrected. The optical rotations were measured using a Perkin-Elmer 241 MC polarimeter in CHCl₃ or C₅H₅N. The IR spectra were taken on a Nicolet Magna 750 FTIR (KBr) spectrophotometer. The NMR spectra were recorded on a Bruker AM-400 instrument. The chemical shift values were reported in units (δ) with TMS as internal standard , and coupling constants (J) are given in Hz. EIMS and HREIMS data were obtained with an MAT-95 mass spectrometer. Silica gel (200—300 , 400 mesh) and precoated plates of silica gel (HSGF₂₅₄) (Qingdao Haiyang Chemical Group Co. Ltd , Qingdao , China) were used for column chromatography (CC) and TLC , respectively.

Plant material

Fresh whole plants of *Huperzia miyoshiana* (Makino) Ching (Huperziaceae) were collected at Changbai Mountain, Jilin Province, China in August 2000 and identified by Dr. Xiao-Qiang Ma of this institute. A voucher specimen has been deposited at the herbarium of this institute (No. 2000-79).

Extraction and isolation

Air-dried and powdered whole plants (4.3 kg) of *H. miyoshiana* were extracted with 95% EtOH (3×10 L) at room temperature. The EtOH extraction was concentrated under reduced pressure, then extracted with aqueous 1% HOAc (3×1.5 L). After filtration, the filter residue was successively partitioned with petroleum ether, CHCl₃, Me₂CO and EtOH (each 3×1 L). Then the CHCl₃ extract (70 g) was subjected to CC over silica gel (100—200 mesh, 1500 g) with gradient eluent of petroleum ether-CHCl₃(50:1 to 0:1) and CHCl₃-Me₂CO (25:1 to 0:1) to give frs. 1—8. Fr. 1 (300 mg) yielded needles, were re-

crystallized with CH₂Cl₂-Me₂CO (5:1), affording 6 (15 mg). Fr. 2 (5 g) was chromatographed with petroleum ether-ether (4:1, 1:1, each 1500 mL) as eluent, affording 7 (500 mg) and 8 (20 mg). Fr. 3 (1.5 g) furnished solid crystals, were recrystallized with CH₂Cl₂-Me₂CO (5: 1) to yield 9 (50 mg). The concentrated mother liquor (800 mg) was purified with CHCl₃ (500 mL) to give 4 (130 mg) and 5 (30 mg). Repeated chromatography on fr. 4 (4.0 g) with increasing polarity eluent of CH₂Cl₂-Me₂CO (15:1,10:1,5:1, each 500 mL) afforded 1 (50 mg). Fr. 5 (5.2 g) was followed by silica gel CC with CH₂Cl₂-Me₂CO (2:1 to acetone) as eluate to give 3 subfractions: frs. 5.1—5.3, frs. 5.4—5.7 and frs. 5.8— 5.12. Further purification on frs. 5.1—5.3, frs. 5.4— 5.7 and frs. 5.8—5.12 resulted in 2 (17 mg), 3 (6 mg), 10 (8 mg) and 11 (50 mg), respectively. Fr. 6 (2.2 g) was purified on silica gel (CH₂Cl₂-Me₂CO, 3:1, 1500 mL) to afford **12** (40 mg) and **13** (75 mg).

Acetylation of 3-O-acetyltohogenol (4) to tohogenol 3-O-acetyltohogenol (30 mg) in pyridiacetate (14) dine (2 mL) was acetylated with Ac₂O (1 mL) for 1 h at room temperature. Then the solution was poured into ice water, and extracted with CH₂Cl₂. The organic extract was washed with 5% HCl and water, dried over Na₂SO₄, and concentrated to give a residue, which was crystallized from CH₂Cl₂ to afford tohogenol diacetate (27 mg) as prisms, m.p. 306—308 °C; ¹H NMR (C_5D_5N , 400 MHz) δ : 4.76 (dd , J = 10.5 , 5.2 Hz , 1H , H-3) , 4.60 (dd , J = 11.4, 5.3 Hz, 1H, H-21), 2.09, 2.05 (s, 3H, respectively, $2 \times COCH_3$), 1.29, 1.01, 0.98, 0.95, 0.86, 0.84, 0.82 (s, 3H, respectively, $7 \times CH_3$); IR (KBr)ν: 3437 (OH), 2945, 1726, 1375, 1252, 1028, 993 cm $^{-1}$.

Dehydration of tohogenol diacetate (14) to 6 SO-Cl{5 drops) was added to an ice-cooled solution of diacetate tohogenol (25 mg) in pyridine (2 mL), and the mixture was stirred for 4 h at room temperature. Work-up as the above and crystallization of the residue gave 6 (17 mg). ¹H NMR and TLC of the product did not show the presence of *iso*-serratenediol diacetate.

Miyoshianol A (1) Colorless needles from CHCl₃-CH₃OH (1:1), m.p. 247—249 °C ,[α $^{\circ}_{0}$ – 15.7 (c 0.12 , C₅H₅N); 1 H and 13 C NMR data see Tables 1 and 2 ; IR (KBr) ν : 3504 , 3408 , 2939 , 1720 , 1518 , 1463 , 1369 , 1182 , 989 , 752 cm $^{-1}$; EIMS m/z (%): 638([M] $^{+}$, 0.7) , 620(41), 425(55), 407(44), 287 (11), 196(35), 189(39), 189(39), 137 (100), 95 (44); HREIMS calcd for C₄₀H₆₂O₆ 638.4546 , found 638.4527.

Miyoshianol B (2) White powders , m.p. 235—238 °C , [α $^{20}_{D}$ – 19.3 (c 0.12 , CHCl₃); 1 H and 13 C NMR data see Tables 1 and 2; IR (KBr) ν : 3410 ,

2939 , 1702 , 1666 , 1600 , 1516 , 1462 , 1385 , 1268 , 1157 , 1036 , 986 cm⁻¹ ; EIMS m/z (%): 648 (M⁺ , 10) , 630 (14) , 455 (27) , 437 (12) , 220 (19) , 194 (51) , 177 (100) , 107 (45) ; HREIMS calcd for $C_{40}H_{56}O_7$ 648 .4026 , found 648 .4009 .

Miyoshianol C (3) White powders , m.p. 240—243 °C ,[α $^{20}_{0}$ – 15.4 (c 0.17 , CHCl₃); 1 H and 13 C NMR data see Tables 1 and 2 ; IR (KBr) ν : 3427 , 2926 , 1699 , 1655 , 1603 , 1516 , 1464 , 1387 , 1269 , 1157 , 995 ,756 cm $^{-1}$; EIMS m/z (%): 648 (M $^{+}$, 10) , 630 (12) , 454 (25) , 421 (20) , 177 (90) , 71 (65) , 57 (100) ; HREIMS calcd for C₄₀ H₅₆ O₇ 648 . 4026 , found 648 . 4044 .

3-*O-acetyltohogenol* (**4**) Colorless needles from CHCl₃-CH₃OH (1:1), m.p. 298—300 °C ,[α $\frac{R}{2}$ ⁰ – 7 (c 0.27 , C₅H₅N); 1 H and 13 C NMR data see Tables 1 and 2 ; IR (KBr) ν : 3433 , 2939 , 1720 , 1248 , 1030 , 993 cm $^{-1}$; EIMS m/z (%): 502 (M⁺ , 9) , 484 (58) , 469 (47) , 442 (29) , 427 (49) , 409 (41) , 391 (37) , 189 (92) , 161 (47) , 135 (96) , 107 (100).

References

- Inubushi , Y. ; Tsuda , Y. ; Ishii , H. ; Hosokawa , M. ; Sano ,
 T. J. Pharm. Soc. Jpn. 1962 , 82 , 1339.
- Inubushi , Y. ; Sano , T. ; Tsuda , Y. Tetrahedron Lett. 1964 , 21 , 1303.
- 3 Kulshreshtha , M. J. ; Kulshreshtha , D. K. ; Rastogi , R. P. *Phytochemistry* **1972** , *11* , 2369.
- 4 Pant, P.; Rastogi, R. P. Phytochemistry 1979, 18, 1095.
- 5 Berti, G.; Bottari, F.; Marsilli, A.; Morelli, I.; Mandelbaum, A. J. Chem. Soc., Chem. Commun. 1967, 50.
- 6 Benes , I. ; Vanek , T. ; Budesinsky , M. ; Herout , V. Phytochemistry 1981 , 20 , 2591.
- 7 Zhou , H. ; Jiang , S.-H. ; Tan , C.-H. ; Wang , B.-D. ; Zhu , D.-Y. Planta Med. 2003 , 69 , 91.
- 8 Burnell , R. H. ; Mo , L. ; Moinas , M. Phytochemistry 1972 , 11 , 2815.
- 9 Fang, J.-M.; Tsai, W.-Y.; Cheng, Y.-S. Phytochemistry 1991, 30, 1333.
- 10 Tsuda , Y. ; Kaneda , M. ; Yasufuku , N. ; Shimizu , Y. Chem. Pharm. Bull. 1981 , 29 , 2123.
- Tsuda, Y.; Fujimoto, T.; Kimpara, K. J. Chem. Soc., Chem. Commun. 1970, 261.
- 12 Inubushi , Y. ; Hibino , T. ; Hasegawa , T. ; Somanathan , R. J. Chem. Soc. , Chem. Commun. 1971 , 3109.
- 13 Miller , N. ; Hootele , C. ; Brackman , J. C. *Phytochemistry* 1973 , 12 , 1759.
- 14 Tsuda , Y. ; Tabata , Y. ; Ichinohe , Y. Chem. Pharm. Bull. 1980 , 28 , 3275.